Resposta:
Explicació:
Anomenem els vèrtexs de les cantonades.
Deixar
Tenim
La zona
El radi del cercle més gran és el doble del radi del cercle més petit. L'àrea de la rosquilla és de 75 pi. Cerqueu el radi del cercle més petit (interior)?
El radi més petit és 5 Sigui r = el radi del cercle interior. Aleshores el radi del cercle més gran és 2r A partir de la referència obtenim l’equació de l’àrea d’un anulus: A = pi (R ^ 2-r ^ 2) Substituïdor 2r per R: A = pi ((2r) ^ 2- r ^ 2) Simplifica: A = pi ((4r ^ 2-r ^ 2) A = 3pir ^ 2 Substituïu a la zona donada: 75pi = 3pir ^ 2 Divideix els dos costats per 3pi: 25 = r ^ 2 r = 5
Dos acords paral·lels d'un cercle amb longituds de 8 i 10 serveixen com a bases d'un trapezi inscrit al cercle. Si la longitud d'un radi del cercle és de 12, quina és la major àrea possible de tal trapezi inscrit descrit?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 1 i 2 Esquemàticament, podríem inserir un paral·lelogram ABCD en un cercle, i sempre que els costats AB i CD siguin acords dels cercles, en la forma de la figura 1 o la figura 2. La condició que els costats AB i CD hagin de ser els acords del cercle impliquen que el trapezoide inscrit ha de ser un isòsceles perquè les diagonals del trapezoide (AC i CD) són iguals perquè A hat BD = B hat AC = B hatD C = Un CD de barret i la línia perpendicular a AB i CD A través del centre E es barregen aquests acords (això significa que AF = B
Tenim un cercle amb un quadrat inscrit amb un cercle inscrit amb un triangle equilàter inscrit. El diàmetre del cercle exterior és de 8 peus. El material del triangle costava 104,95 dòlars quadrats. Quin és el cost del centre triangular?
El cost d’un centre triangular és de $ 1090.67 AC = 8 com a diàmetre donat d’un cercle. Per tant, del teorema de Pitàgores per al triangle isòsceles dret Delta ABC, AB = 8 / sqrt (2) Llavors, des de GE = 1/2 AB, GE = 4 / sqrt (2) lybviament, el triangle Delta GHI és equilàter. El punt E és un centre d’un cercle que circumscriu Delta GHI i, com a tal, és un centre d’intersecció de mitges, altituds i bisectrius d’aquest triangle. Se sap que un punt d’intersecció de les medianes divideix aquestes mitjanes en la proporció de 2: 1 (per veure proves veure Unizor i seguir els