Sabem que es pot aproximar una funció amb aquesta fórmula
ón el
Ara suposem que
Calculem per a cada un
Quan
I ho veiem
'L varia conjuntament com una arrel quadrada de b, i L = 72 quan a = 8 i b = 9. Trobeu L quan a = 1/2 i b = 36? Y varia conjuntament com el cub de x i l'arrel quadrada de w, i Y = 128 quan x = 2 i w = 16. Trobeu Y quan x = 1/2 i w = 64?
L = 9 "i" y = 4> "la declaració inicial és" Lpropasqrtb "per convertir a una equació multiplicar per k la constant de variació" rArrL = kasqrtb "per trobar k usa les condicions donades" L = 72 "quan "a = 8" i "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" equació és "color (vermell) (barra (ul (| color (blanc) ( 2/2) color (negre) (L = 3asqrtb) color (blanc) (2/2) |)) "" quan "a = 1/2" i "b = 36" L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 colors (blau) "---------------
Com es poden trobar els tres primers termes d’una sèrie de Maclaurin per a f (t) = (e ^ t - 1) / t utilitzant la sèrie de Maclaurin d’e ^ x?
Sabem que la sèrie de Maclaurin d’ex x és sum_ (n = 0) ^ oox ^ n / (n!). També podem derivar aquesta sèrie utilitzant l'expansió de Maclaurin de f (x) = sum_ (n = 0) ^ oof ^ ((n)) (0) x ^ n / (n!) i el fet que totes les derivades de e ^ x siguin encara e ^ x i e ^ 0 = 1. Ara, simplement substituïu la sèrie anterior a (e ^ x-1) / x = (suma_ (n = 0) ^ oo (x ^ n / (n!)) - 1) / x = (1 + suma (n = 1) ^ oo (x ^ n / (n!)) - 1) / x = (sum_ (n = 1) ^ oo (x ^ n / (n!))) / X = sum_ (n = 1) ^ oox ^ (n-1) / (n!) Si voleu que l'índex comenci per i = 0, simplement substituïu n = i + 1:
Quan un polinomi es divideix per (x + 2), la resta és -19. Quan el mateix polinomi es divideix per (x-1), la resta és 2, com es determina la resta quan el polinomi es divideix per (x + 2) (x-1)?
Sabem que f (1) = 2 i f (-2) = - 19 del teorema restant troben ara la resta de polinomi f (x) quan es divideix per (x-1) (x + 2) la resta serà de la forma Ax + B, perquè és la resta després de la divisió per un quadràtic. Ara podem multiplicar els temps divisors del quocient Q ... f (x) = Q (x-1) (x + 2) + Ax + B A continuació, inseriu 1 i -2 per a x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolent aquestes dues equacions, obtenim A = 7 i B = -5 Resta = Ax + B = 7x-5