Resposta:
Si us plau, llegiu l’explicació.
Explicació:
L’altitud d’un triangle és un segment de línia perpendicular des del vèrtex del triangle fins al costat oposat.
L'orthocentre d'un triangle és la intersecció de les tres altituds d'un triangle.
Construïu el triangle
Vèrtexs
Observeu-ho
Aquest angle és més gran que
Si el triangle és un triangle obtús, el L'orthocenter es troba fora del triangle.
Construir altituds a través dels vèrtexs del triangle com es mostra a continuació:
Tots tres altituds reunir-se en un punt referit com a Orthocentre.
Des del triangle obtús, el ortocentre mentides fora del triangle.
Observeu que Orthocentre té
Espero que ajudi.
Què és l'ortocentre d'un triangle amb cantonades a (1, 2), (5, 6) i (4, 6) #?
L’ortocentre del triangle és: (1,9) Sigui, triangleABC el triangle amb cantonades en A (1,2), B (5,6) iC (4,6) Deixar, barra (AL), barra (BM) i la barra (CN) és l’altitud de la barra lateral (BC), la barra (AC) i la barra (AB), respectivament. Sigui (x, y) la intersecció de tres altituds. Pendent de la barra (AB) = (6-2) / (5-1) = 1 => pendent de la barra (CN) = - 1 [:. altitud] i la barra (CN) passa per C (4,6). Així, equn. de la barra (CN) és: y-6 = -1 (x-4) és a dir, color (vermell) (x + y = 10 .... a (1) Ara, pendent de la barra (AC) = (6-2 ) / (4-1) = 4/3 => pendent de la barra (BM)
Què és l'ortocentre d'un triangle amb cantonades a (1, 3), (5, 7) i (2, 3) #?
L’ortocentre del triangle ABC és H (5,0). Sigui el triangle ABC amb cantonades en A (1,3), B (5,7) i C (2,3). així, el pendent de "línia" (AB) = (7-3) / (5-1) = 4/4 = 1, deixeu, barra (CN) _ | _bar (AB):. El pendent de "línia" CN = -1 / 1 = -1, i passa per C (2,3). :. L'equació. de "línia" CN, és: y-3 = -1 (x-2) => y-3 = -x + 2 és a dir x + y = 5 ... a (1) Ara, el pendent de "línia" (BC) = (7-3) / (5-2) = 4/3 Deixeu, barra (AM) _ | _bar (BC):. El pendent de "línia" AM = -1 / (4/3) = - 3/4, i passa per A (1,3). :. L
Què és l'ortocentre d'un triangle amb cantonades a (1, 3), (5, 7) i (9, 8) #?
(-10 / 3,61 / 3) Repetint els punts: A (1,3) B (5,7) C (9,8) L'ortocentre d'un triangle és el punt on la línia de les altures és relativa a cada costat (passant pel vèrtex oposat) es troben Per tant, només necessitem les equacions de 2 línies. El pendent d’una línia és k = (Delta y) / (Delta x) i el pendent de la línia perpendicular a la primera és p = -1 / k (quan k! = 0). AB-> k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC-> k = (8-7) / (9-5) = 1/4 => p_2 = -4 Equació de la línia (passant per C) en la qual es situa l’altura perpendicular a AB (