Com es resol la sin (x) - cos (x) -tan (x) = -1?

Com es resol la sin (x) - cos (x) -tan (x) = -1?
Anonim

Resposta:

# "El conjunt de solucions" = {2kpi} uu {kpi + pi / 4}, k en ZZ #.

Explicació:

Donat que, # sinx-cosx-tanx = -1.

#:. sinx-cosx-sinx / cosx + 1 = 0 #.

#:. (sinx-cosx) - (sinx / cosx-1) = 0 #.

#:. (sinx-cosx) - (sinx-cosx) / cosx = 0 #.

#:. (sinx-cosx) cosx- (sinx-cosx) = 0 #.

#:. (sinx-cosx) (cosx-1) = 0.

#:. sinx = cosx o cosx = 1 #.

# "Cas 1:" sinx = cosx #.

Observeu-ho #cosx! = 0, perquè, "en cas contrari," tanx "esdevé" # "

indefinit.

Per tant, dividint per #cosx! = 0, sinx / cosx = 1 o, tanx = 1 #.

#:. tanx = tan (pi / 4) #.

#:. x = kpi + pi / 4, k en ZZ, "en aquest cas".

# "Cas 2:" cosx = 1 #.

# "En aquest cas," cosx = 1 = cos0,:. x = 2kpi + -0, k en ZZ #.

En conjunt, tenim, # "El conjunt de solucions" = {2kpi} uu {kpi + pi / 4}, k en ZZ #.

Resposta:

# rarrx = 2npi, npi + pi / 4 # on #n en ZZ #

Explicació:

# rarrsinx-cosx-tanx = -1

# rarrsinx-cosx-sinx / cosx + 1 = 0 #

#rarr (sinx * cosx-cos ^ 2x-sinx + cosx) / cosx = 0 #

# rarrsinx * cosx-sinx-cos ^ 2x + cosx = 0 #

#rarrsinx (cosx-1) -cosx (cosx-1) = 0 #

#rarr (cosx-1) (sinx-cosx) = 0 #

Quan # rarrcosx-1 = 0 #

# rarrcosx = cos0 #

# rarrx = 2npi + -0 = 2npi # on #n en ZZ #

Quan # rarrsinx-cosx = 0 #

#rarrcos (90-x) -cosx = 0 #

# rarr2sin ((90-x + x) / 2) * sin ((x-90 + x) / 2) = 0

#rarrsin (x-pi / 4) = 0 Com #sin (pi / 4)! = 0 #

# rarrx-pi / 4 = npi #

# rarrx = npi + pi / 4 # on #n en ZZ #