Resposta:
Domini:
Explicació:
Com que es tracta de l’arrel quadrada d’una expressió, s’ha de excloure del domini de la funció qualsevol valor de
Per a nombres reals, l’arrel quadrada només es pot treure de números positius, el que significa que necessiteu
# x ^ 2 - 2x + 5> = 0 #
Ara heu de trobar els valors de
# x ^ 2 - 2x + 5> = 0 #
# x ^ 2 - 2x + 1 + 4> = 0 #
# (x-1) ^ 2 + 4> = 0 #
Perquè
# (x-1) ^ 2 + 4> = 0 "," (AA) x a RR #
Això vol dir que el domini de la funció pot incloure tots els nombres reals, ja que no es pot tenir una expressió negativa sota l’arrel quadrada independentment de quina
En la notació d’interval, el domini de la funció serà així
gràfic {sqrt (x ^ 2-2x + 5) -10, 10, -5, 5}
El domini de f (x) és el conjunt de tots els valors reals excepte 7, i el domini de g (x) és el conjunt de tots els valors reals excepte -3. Què és el domini de (g * f) (x)?
Tots els nombres reals excepte 7 i -3 quan multipliqueu dues funcions, què fem? estem prenent el valor f (x) i el multipliquem pel valor g (x), on x ha de ser el mateix. No obstant això, ambdues funcions tenen restriccions, 7 i -3, de manera que el producte de les dues funcions ha de tenir restriccions * ambdues Normalment, quan es fan operacions en funcions, si les funcions anteriors (f (x) i g (x)) tenien restriccions, sempre es prenen com a part de la nova restricció de la nova funció o del seu funcionament. També podeu visualitzar-ho fent dues funcions racionals amb diferents valors restringits
Què és (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Prenem, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel·lar (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel·lar (2sqrt15) -5 + 2 * 3 + cancel·lar (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Tingueu en compte que si en els denomina
Quin és el domini de la funció combinada h (x) = f (x) - g (x), si el domini de f (x) = (4,4,5] i el domini de g (x) és [4, 4,5 )?
El domini és D_ {f-g} = (4,4,5). Vegeu l’explicació. (f-g) (x) només es pot calcular per a les x, per a les quals es defineixen tant f com g. Així que podem escriure: D_ {f-g} = D_fnnD_g Aquí tenim D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)