Resposta:
Explicació:
Tenint en compte els punts
La inclinació entre aquests dos punts és
Podríem escriure l’equació de la línia a través d’aquests dos punts com:
utilitzant el pendent des de dalt i qualsevol dels punts donats.
Per exemple:
Es podria convertir en forma estàndard:
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
La línia L té l'equació 2x-3y = 5 i la Línia M passa pel punt (2, 10) i és perpendicular a la línia L. Com es determina l'equació de la línia M?
En forma de punt de pendent, l’equació de la línia M és y-10 = -3 / 2 (x-2). En forma d’interconnexió de talus, és y = -3 / 2x + 13. Per tal de trobar el pendent de la línia M, primer hem de deduir el pendent de la línia L. L'equació de la línia L és 2x-3y = 5. Això és en forma estàndard, que no ens explica directament la inclinació de L. Podem reordenar aquesta equació, però, en forma d’interconnexió de talus resolent y: 2x-3y = 5 color (blanc) (2x) -3y = 5-2x "" (restar 2x dels dos costats) color (blanc) (2x-3) y = (5-2x) /
La línia n passa a través dels punts (6,5) i (0, 1). Quina és la intercepció y de la línia k, si la línia k és perpendicular a la línia n i passa pel punt (2,4)?
7 és la intercepció y de la línia k Primer, trobem el pendent de la línia n. (1-5) / (0-6) (-4) / - 6 2/3 = m El pendent de la línia n és 2/3. Això vol dir que el pendent de la línia k, que és perpendicular a la línia n, és el recíproc negatiu de 2/3 o -3/2. Així, doncs, l’equació que tenim fins ara és: y = (- 3/2) x + b Per calcular la intercepció y o b, només heu de connectar (2,4) a l’equació. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Així que la intercepció y és de 7