Resposta:
El domini és tots els nombres reals excepte 0 i 1. Els zeros són a x = 2 i x = -1.
Explicació:
El domini de f (x) és el conjunt de tots els valors reals excepte 7, i el domini de g (x) és el conjunt de tots els valors reals excepte -3. Què és el domini de (g * f) (x)?
Tots els nombres reals excepte 7 i -3 quan multipliqueu dues funcions, què fem? estem prenent el valor f (x) i el multipliquem pel valor g (x), on x ha de ser el mateix. No obstant això, ambdues funcions tenen restriccions, 7 i -3, de manera que el producte de les dues funcions ha de tenir restriccions * ambdues Normalment, quan es fan operacions en funcions, si les funcions anteriors (f (x) i g (x)) tenien restriccions, sempre es prenen com a part de la nova restricció de la nova funció o del seu funcionament. També podeu visualitzar-ho fent dues funcions racionals amb diferents valors restringits
Per què hi ha tanta gent la impressió que hem de trobar el domini d’una funció racional per trobar els seus zeros? Els zeros de f (x) = (x ^ 2-x) / (3x ^ 4 + 4x ^ 3-7x + 9) són 0,1.
Crec que trobar el domini d'una funció racional no està necessàriament relacionat amb la recerca de les seves arrels / zeros. Trobar el domini significa simplement trobar les condicions prèvies per a la mera existència de la funció racional. En altres paraules, abans de trobar les seves arrels, hem d’assegurar-nos en quines condicions existeix la funció. Podria semblar pedante fer-ho, però hi ha casos particulars quan això importa.
Si f (x) = 3x ^ 2 i g (x) = (x-9) / (x + 1), i x! = - 1, llavors, què seria f (g (x)) igual? g (f (x))? f ^ -1 (x)? Què seria el domini, l'interval i els zeros per a f (x)? Què seria el domini, l'interval i els zeros per a g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x en RR}, R_f = {f (x) en RR; f (x)> = 0} D_g = {x en RR; x! = - 1}, R_g = {g (x) en RR; g (x)! = 1}