Resposta:
Mirar abaix.
Explicació:
Suposant que els termes que voleu restar es poden escriure així:
A causa de l’ordre de les operacions,
que dicta l’ordre en què podem realitzar operacions binàries (les que s’indiquen més amunt, en ordre de dalt a baix), no podem restar els dos termes encara, perquè, observareu anteriorment, no podem restar abans de multiplicar-lo. Per tant, primer hem de distribuir el
Per la propietat distributiva sabem això
Continuant:
Combinant termes com:
Ara podem restar els dos termes:
El primer i el segon termes d’una seqüència geomètrica són, respectivament, el primer i el tercer termes d’una seqüència lineal. El quart terme de la seqüència lineal és 10 i la suma dels seus primers cinc termes és 60.
{16, 14, 12, 10, 8} Una seqüència geomètrica típica es pot representar com c_0a, c_0a ^ 2, cdots, c_0a ^ k i una seqüència aritmètica típica com c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Cridar c_0 a com el primer element de la seqüència geomètrica que tenim {(c_0 a ^ 2 = c_0a + 2Delta -> "El primer i el segon de GS són el primer i el tercer d’un LS"), (c_0a + 3Delta = 10- > "El quart terme de la seqüència lineal és 10"), (5c_0a + 10Delta = 60 -> "La suma dels primers cinc termes és de 60"):}
Quan el polinomi té quatre termes i no es pot factoritzar fora de tots els termes, reorganitzeu el polinomi de manera que pugueu factoritzar dos termes alhora. A continuació, escriviu els dos binomis amb els quals acabareu. (4ab + 8b) - (3a + 6)?
(a + 2) (4b-3) "el primer pas és eliminar els colors" rArr (4ab + 8b) color (vermell) (- 1) (3a + 6) = 4ab + 8b-3a-6 "ara factoritza els termes per "agrupar-los" de color (vermell) (4b) (a + 2) de color (vermell) (- 3) (a + 2) "treuen" (a + 2) "com a factor comú de cada grup "= (a + 2) (color (vermell) (4b-3)) rArr (4ab + 8b) - (3a + 6) = (a + 2) (4b-3) color (blau)" Com a comprovació " (a + 2) (4b-3) larr "s'expandeix mitjançant FOIL" = 4ab-3a + 8b-6larr "comparar amb l'expansió anterior"
Quan el polinomi té quatre termes i no es pot factoritzar fora de tots els termes, reorganitzeu el polinomi de manera que pugueu factoritzar dos termes alhora. A continuació, escriviu els dos binomis que acabeu. (6y ^ 2-4y) + (3y-2)?
(3y-2) (2y + 1) Començarem amb l’expressió: (6y ^ 2-4y) + (3y-2) Tingueu en compte que puc calcular 2y del terme esquerre i que deixarà un 3y-2 dins del parèntesi: 2y (3y-2) + (3y-2) Recordeu que puc multiplicar qualsevol cosa per 1 i aconseguir el mateix. I per això puc dir que hi ha un 1 davant del terme adequat: 2y (3y-2) +1 (3y-2) El que ara puc fer és esbrinar 3y-2 des de la dreta i l'esquerra: (3y -2) (2y + 1) I ara la expressió es fa!