Resposta:
gràfic {x ^ 2-3 -10, 10, -5, 5}
Domini: (infinit negatiu, infinit positiu)
Interval: -3, infinit positiu)
Explicació:
Poseu dues fletxes a les dues vores de la paràbola.
Utilitzeu el gràfic que he proporcionat, busqueu el valor x més baix.
Seguiu cap a l'esquerra i busqueu un lloc de parada que no sigui possiblement el rang de valors x baixos és infinit.
El valor i més baix és l'infinit negatiu.
Ara trobeu el valor de x més alt i busqueu si la paràbola s'atura a qualsevol lloc. Això pot ser (2.013, 45) o alguna cosa així, però de moment, ens agrada dir infinit positiu per facilitar la vostra vida.
El domini està format per (valor x baix, valor x alt), de manera que teniu (infinit negatiu, infinit positiu)
NOTA: els infinits necessiten un suport suau, no un tirant.
Ara, l’interval és qüestió de trobar els valors de valor màxim i més baix.
Moveu el dit al voltant de l’eix Y i trobareu que la paràbola s’atura a -3 i no s’accelera. El rang més baix és -3.
Ara mogui el dit cap als valors de Y positius i si es mourà en les direccions de les fletxes, serà infinit positiu.
Atès que -3 és un enter, posareu una clau abans que el nombre. -3, infinit positiu).
Sigui el domini de f (x) [-2.3] i el rang sigui [0,6]. Què és el domini i el rang de f (-x)?
El domini és l'interval [-3, 2]. L’interval és l’interval [0, 6]. Exactament com és, això no és una funció, ja que el seu domini és només el número -2.3, mentre que el seu abast és un interval. Però suposant que això és només un error tipogràfic i el domini real és l’interval [-2, 3], s’observa a continuació: Sigui g (x) = f (-x). Atès que f requereix que la seva variable independent prengui valors només en l'interval [-2, 3], -x (x negatiu) ha d'estar dins de [-3, 2], que és el domini de g. Com que g obté e
Quin és el domini de la funció combinada h (x) = f (x) - g (x), si el domini de f (x) = (4,4,5] i el domini de g (x) és [4, 4,5 )?
El domini és D_ {f-g} = (4,4,5). Vegeu l’explicació. (f-g) (x) només es pot calcular per a les x, per a les quals es defineixen tant f com g. Així que podem escriure: D_ {f-g} = D_fnnD_g Aquí tenim D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)
Si la funció f (x) té un domini de -2 <= x <= 8 i un rang de -4 <= y <= 6 i la funció g (x) es defineix per la fórmula g (x) = 5f ( 2x)) llavors, quins són el domini i el rang de g?
Baix. Utilitzeu transformacions bàsiques de la funció per trobar el nou domini i el nou rang. 5f (x) significa que la funció està estirada verticalment per un factor de cinc. Per tant, el nou interval abastarà un interval que és cinc vegades més gran que l’original. En el cas de f (2x), s'aplica un tram horitzontal per un factor de la meitat a la funció. Per tant, les extremitats del domini es redueixen a la meitat. Et voilà!