Resposta:
Forats 0
Asimptotes verticals
Asimptotes horitzontals 0
Explicació:
Un asimptota vertical o un forat es crea per un punt en què el domini és igual a zero, és a dir,
Així que tampoc
Es crea una asíntota horitzontal on la part superior i la part inferior de la fracció no es cancel·len. Mentre que un forat es pot cancel·lar.
Tan
Així com el
Per a asíntotes horitzontals, es tracta de trobar el que succeeix quan x s'apropa a infinit o infinit negatiu i si tendeix a un valor y determinat.
Per fer-ho, dividiu el numerador i el denominador de la fracció per la potència més alta de
Per fer-ho, hem de conèixer dues regles
i
Per a límits a la incertesa negativa, hem de fer totes les coses
Així, l’asimptota horitzontal s’acosta a x
Quins són els símptomes i els forats, si n'hi ha, de f (x) = (1 + 1 / x) / (1 / x)?
El és un forat a x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Aquesta és una funció lineal amb gradient 1 i y-intercepció 1. Es defineix a cada x excepte x = 0 perquè la divisió per 0 no està definit.
Quins són els símptomes i els forats, si n'hi ha, de f (x) = 1 / cosx?
Hi haurà asimptotes verticals a x = pi / 2 + pin, n i enter. Hi haurà asimptotes. Sempre que el denominador sigui igual a 0, es produeixen asimptotes verticals. Posem el denominador a 0 i solucionem. cosx = 0 x = pi / 2, (3pi) / 2 Atès que la funció y = 1 / cosx és periòdica, hi haurà asimptotes verticals infinites, tot seguint el patró x = pi / 2 + pin, n un enter. Finalment, tingueu en compte que la funció y = 1 / cosx és equivalent a y = secx. Esperem que això ajudi!
Quins són els símptomes i els forats, si n'hi ha, de f (x) = 1 / (2-x)?
Les asimptotes d’aquesta funció són x = 2 i y = 0. 1 / (2-x) és una funció racional. Això vol dir que la forma de la funció és la següent: gràfica {1 / x [-10, 10, -5, 5]} Ara la funció 1 / (2-x) segueix la mateixa estructura de gràfics, però amb uns pocs ajustaments . El gràfic primer es desplaça horitzontalment cap a la dreta per 2. Això és seguit per una reflexió sobre l'eix x, resultant en un gràfic com el següent: gràfic {1 / (2-x) [-10, 10, -5, 5 ]} Tenint en compte aquest gràfic, per trobar les asimptotes, to