Resposta:
Explicació:
El domini és el conjunt de valors de
El domini és el conjunt de tots els nombres reals excepte el 9.
El domini de f (x) és el conjunt de tots els valors reals excepte 7, i el domini de g (x) és el conjunt de tots els valors reals excepte -3. Què és el domini de (g * f) (x)?
Tots els nombres reals excepte 7 i -3 quan multipliqueu dues funcions, què fem? estem prenent el valor f (x) i el multipliquem pel valor g (x), on x ha de ser el mateix. No obstant això, ambdues funcions tenen restriccions, 7 i -3, de manera que el producte de les dues funcions ha de tenir restriccions * ambdues Normalment, quan es fan operacions en funcions, si les funcions anteriors (f (x) i g (x)) tenien restriccions, sempre es prenen com a part de la nova restricció de la nova funció o del seu funcionament. També podeu visualitzar-ho fent dues funcions racionals amb diferents valors restringits
Quin és el domini i el rang de 3x-2 / 5x + 1 i el domini i l'interval de la inversa de la funció?
El domini és tots reals excepte -1/5 que és el rang de la inversa. El rang és tots els reals excepte 3/5 que és el domini de la inversa. f (x) = (3x-2) / (5x + 1) es defineix i els valors reals per a tots els x excepte el -1/5, de manera que és el domini de f i el rang de f ^ -1 que posa y = (3x -2) / (5x + 1) i la resolució de x proporciona 5xy + y = 3x-2, de manera que 5xy-3x = -y-2, i per tant (5y-3) x = -y-2, per tant, finalment x = (- y-2) / (5y-3). Veiem que i = 3/5. Així, el rang de f és tots reals excepte 3/5. Aquest és també el domini de f ^ -1.
Quin és el domini de la funció combinada h (x) = f (x) - g (x), si el domini de f (x) = (4,4,5] i el domini de g (x) és [4, 4,5 )?
El domini és D_ {f-g} = (4,4,5). Vegeu l’explicació. (f-g) (x) només es pot calcular per a les x, per a les quals es defineixen tant f com g. Així que podem escriure: D_ {f-g} = D_fnnD_g Aquí tenim D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)