Resposta:
Explicació:
Resposta:
y = 3 o y = -3
Explicació:
Mostrar que cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estic una mica confós si fa Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), es tornarà negatiu com cos (180 ° -theta) = - costheta a el segon quadrant. Com puc provar la pregunta?
Si us plau mireu més a baix. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
L'àrea d'un triangle és de 24 cm² [al quadrat]. La base és més gran de 8 cm que l'alçada. Utilitzeu aquesta informació per configurar una equació quadràtica. Resoldre l’equació per trobar la longitud de la base?
Deixeu que la longitud de la base sigui x, de manera que l'alçada serà x-8, de manera que l'àrea del triangle és de 1/2 x (x-8) = 24 o, x ^ 2 -8x-48 = 0 o, x ^ 2 -12x + 4x-48 = 0 o, x (x-12) +4 (x-12) = 0 o, (x-12) (x + 4) = 0 així, ja sigui x = 12 o x = -4 però la longitud del triangle no pot ser negativa, així que aquí la longitud de la base és de 12 cm
Tomas va escriure l'equació y = 3x + 3/4. Quan Sandra va escriure la seva equació, van descobrir que la seva equació tenia totes les mateixes solucions que l'equació de Tomás. Quina equació podria ser de Sandra?
4y = 12x +3 12x-4y +3 = 0 Una equació es pot donar en moltes formes i encara significa el mateix. y = 3x + 3/4 "" (conegut com a forma de pendent / intercepció.) Multiplicat per 4 per eliminar la fracció que dóna: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma estàndard) 12x- 4y +3 = 0 "" (forma general) Totes es troben en la forma més senzilla, però també podríem tenir variacions infinites. 4y = 12x + 3 es podria escriure com: 8y = 24x +6 "" 12y = 36x +9, 20y = 60x +15 etc