En primer lloc, hem de trobar el pendent de la línia utilitzant la fórmula següent.
Per tant, la inclinació de la línia és
A continuació, hem de trobar la intercepció y substituint la següent mitjançant el pendent i un dels punts donats.
(2,5)
Per tant, la intercepció y és
Finalment, escriviu l’equació.
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
L’equació de la línia és -3y + 4x = 9. Com escriviu l’equació d’una línia paral·lela a la línia i passa pel punt (-12,6)?
Y-6 = 4/3 (x + 12) Utilitzarem la forma de gradient de punt ja que ja tenim un punt al qual anirà la línia (-12,6) i la paraula paral·lela significa que el gradient de les dues línies ha de ser el mateix. per tal de trobar el gradient de la línia paral·lela, hem de trobar el gradient de la línia que hi és paral·lela. Aquesta línia és -3y + 4x = 9, que es pot simplificar en y = 4 / 3x-3. Això ens dóna el gradient de 4/3. Ara per escriure l’equació el col·loquem en aquesta fórmula y-y_1 = m (x-x_1), van ser (x_1, y_1) el punt que travessen i m
Els Lakers van aconseguir un total de 80 punts en un partit de bàsquet contra els Bulls. Els Lakers van fer un total de 37 cistelles de dos punts i tres punts. Quants tirs de dos punts van fer els Lakers? Escriviu un sistema d'equacions lineals que es poden utilitzar per resoldre-ho
Els Lakers van fer 31 punters i 6 triples. Sigui x el nombre de captures de dos punts realitzades i deixeu el nombre de tirs de tres punts realitzats. Els Lakers van obtenir un total de 80 punts: 2x + 3y = 80 Els Lakers van fer un total de 37 cistelles: x + y = 37 Aquestes dues equacions es poden resoldre: (1) 2x + 3y = 80 (2) x + y = 37 L'equació (2) dóna: (3) x = 37-y Substituint (3) a (1) dóna: 2 (37-y) + 3y = 80 74-2y + 3y = 80 y = 6 Ara només fem servir el equació més simple (2) per obtenir x: x + y = 37 x + 6 = 37 x = 31 Per tant, els Lakers van fer 31 punters i 6 triples.