A continuació es mostra la gràfica de la funció f (x) = (x + 2) (x + 6). Quina afirmació sobre la funció és certa? La funció és positiva per a tots els valors reals de x on x> –4. La funció és negativa per a tots els valors reals de x on –6 <x <–2.
La funció és negativa per a tots els valors reals de x on –6 <x <–2.
Quin és el domini de la funció combinada h (x) = f (x) - g (x), si el domini de f (x) = (4,4,5] i el domini de g (x) és [4, 4,5 )?
El domini és D_ {f-g} = (4,4,5). Vegeu l’explicació. (f-g) (x) només es pot calcular per a les x, per a les quals es defineixen tant f com g. Així que podem escriure: D_ {f-g} = D_fnnD_g Aquí tenim D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)
Si la funció f (x) té un domini de -2 <= x <= 8 i un rang de -4 <= y <= 6 i la funció g (x) es defineix per la fórmula g (x) = 5f ( 2x)) llavors, quins són el domini i el rang de g?
Baix. Utilitzeu transformacions bàsiques de la funció per trobar el nou domini i el nou rang. 5f (x) significa que la funció està estirada verticalment per un factor de cinc. Per tant, el nou interval abastarà un interval que és cinc vegades més gran que l’original. En el cas de f (2x), s'aplica un tram horitzontal per un factor de la meitat a la funció. Per tant, les extremitats del domini es redueixen a la meitat. Et voilà!