Resposta:
dy / dx =
Explicació:
Utilitzeu la regla del quocient per obtenir el següent:
y '=
y '=
multiplicar el numerador per obtenir això:
y '=
llavors l'única simplificació que podeu utilitzar és la identitat trig
aconseguir:
y '=
y '=
Com demostrar (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Si us plau mireu més a baix. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2in (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Demaneu-ho: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Prova a continuació utilitzant conjugats i la versió trigonomètrica del teorema de Pitàgores. Part 1 sqrt ((1-cosx) / (1 + cosx)) color (blanc) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) color (blanc) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * color sqrt (1-cosx) / sqrt (1-cosx) (blanc) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Part 2 de manera similar sqrt ((1 + cosx) / color (1-cosx) (blanc) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) part 3: combinació dels termes sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) color (blanc) ("XXX") = (1-
Com es diferencia de f (x) = (sinx) / (sinx-cosx) utilitzant la regla del quocient?
La resposta és: f '(x) = - cosx (sinx + cosx) / (1-sin2x) La regla de quotes estableix que: a (x) = (b (x)) / (c (x)) llavors: a '(x) = (b' (x) * c (x) -b (x) * c '(x)) / (c (x)) ^ 2 Igualment per f (x): f (x) = ( sinx) / (sinx-cosx) f '(x) = ((sinx)' (sinx-cosx) -sinx (sinx-cosx) ') / (sinx-cosx) ^ 2 f' (x) = (cosx ( sinx-cosx) -sinx (cosx - (- cosx)) / (sinx-cosx) ^ 2 f '(x) = (cosxsinx-cos ^ 2x-sinxcosx-sinxcosx) / (sinx-cosx) ^ 2 f' (x) = (- sinxcosx-cos ^ 2x) / (sinx-cosx) ^ 2 f '(x) = - cosx (sinx + cosx) / (sinx-cosx) ^ 2 f' (x) = - cosx ( sinx + cosx) / (sin ^ 2x