Resposta:
Explicació:
El denominador de f (x) no pot ser zero, ja que faria que f (x) no estigués definida. Igualant el denominador a zero i resolent els valors que x no pot ser.
# "resol" 5x ^ 2 + 2x + 1 = 0 # Per tant, això no és factible
#color (blau) "el discriminant" #
# "aquí" a = 5, b = 2 "i" c = 1
# b ^ 2-4ac = 4-20 = -16 # Com que el discriminant és <0, no hi ha arrels reals i, per tant, no hi ha asíntotes verticals.
Es produeixen asimptotes horitzontals com
#lim_ (xto + -oo), f (x) toc "(una constant)" # dividir els termes en numerador / denominador per la potència més alta de x, és a dir
# x ^ 2 #
#f (x) = ((3x ^ 2) / x ^ 2) / ((5x ^ 2) / x ^ 2 + (2x) / x ^ 2 + 1 / x ^ 2) = 3 / (5 + 2 / x + 1 / x ^ 2) # com
# xto + -oo, f (x) to3 / (5 + 0 + 0) #
# rArry = 3/5 "és l’asimptota" Els forats es produeixen quan hi ha un factor duplicat al numerador / denominador. Aquest no és el cas, per tant, no hi ha forats.
gràfic {(3x ^ 2) / (5x ^ 2 + 2x + 1) -10, 10, -5, 5}
Quins són els símptomes i els forats, si n'hi ha, de f (x) = (1 + 1 / x) / (1 / x)?
El és un forat a x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Aquesta és una funció lineal amb gradient 1 i y-intercepció 1. Es defineix a cada x excepte x = 0 perquè la divisió per 0 no està definit.
Quins són els símptomes i els forats, si n'hi ha, de f (x) = 1 / cosx?
Hi haurà asimptotes verticals a x = pi / 2 + pin, n i enter. Hi haurà asimptotes. Sempre que el denominador sigui igual a 0, es produeixen asimptotes verticals. Posem el denominador a 0 i solucionem. cosx = 0 x = pi / 2, (3pi) / 2 Atès que la funció y = 1 / cosx és periòdica, hi haurà asimptotes verticals infinites, tot seguint el patró x = pi / 2 + pin, n un enter. Finalment, tingueu en compte que la funció y = 1 / cosx és equivalent a y = secx. Esperem que això ajudi!
Quins són els símptomes i els forats, si n'hi ha, de f (x) = 1 / (2-x)?
Les asimptotes d’aquesta funció són x = 2 i y = 0. 1 / (2-x) és una funció racional. Això vol dir que la forma de la funció és la següent: gràfica {1 / x [-10, 10, -5, 5]} Ara la funció 1 / (2-x) segueix la mateixa estructura de gràfics, però amb uns pocs ajustaments . El gràfic primer es desplaça horitzontalment cap a la dreta per 2. Això és seguit per una reflexió sobre l'eix x, resultant en un gràfic com el següent: gràfic {1 / (2-x) [-10, 10, -5, 5 ]} Tenint en compte aquest gràfic, per trobar les asimptotes, to