Donat dos punts
el pendent és
Per als punts donats
Ara que tenim el pendent podem utilitzar qualsevol dels punts donats per escriure una forma de punt de inclinació per a l’equació:
La forma d’intercepció de pendents és
on
Treballant amb la forma de punt de pendent desenvolupada anteriorment:
Obtenim la forma d’interconnexió de pendent:
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
Sigui P (x_1, y_1) un punt i sigui l la línia amb l'equació ax + per + c = 0.Mostra la distància d de P-> l donada per: d = (ax_1 + per_1 + c) / sqrt (a ^ 2 + b ^ 2)? Trobeu la distància d del punt P (6,7) de la línia l amb l’equació 3x + 4y = 11?
D = 7 Deixem l '> a x + b y + c = 0 i p_1 = (x_1, y_1) un punt no sobre l. Suposant que b ne 0 i crida d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 després de substituir y = - (a x + c) / b a d ^ 2 tenim d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. El següent pas és trobar el mínim d ^ 2 pel que fa a x, de manera que trobarem x tal que d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. Això ocorre per x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Ara, substituint aquest valor a d ^ 2 obtenim d ^ 2 = (c) + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) d = (c + a x_1 + b y_1) / sqrt (a
Quina és l’equació en forma de talús punt i pendent de la línia donada inclinació 3 5 que passa pel punt (10, 2)?
Forma punt-pendent: y-y_1 = m (x-x_1) m = pendent i (x_1, y_1) és la forma punt-intercepció de pendent: y = mx + c 1) y - (- 2) = 3/5 ( x-10) => y + 2 = 3/5 (x) -6 5y-3x-40 = 0 2) y = mx + c -2 = 3/5 (10) + c => - 2 = 6 + c => c = -8 (que també es pot observar a partir de l'equació anterior) y = 3/5 (x) -8 => 5y-3x-40 = 0