Resposta:
El gràfic és una hipèrbola, de manera que hi ha dues línies de simetria:
Explicació:
El gràfic de
Les hipèrboles tenen dues línies de simetria. les dues línies de simetria passen pel centre de la hipèrbola. Un passa a través dels vèrtexs (ia través dels focus) i l'altre és perpendicular al primer.
El gràfic de
Per
Una manera de descriure-ho és que traduïm les línies de simetria de la mateixa manera que vam fer la hipèrbola: substituïm
Les dues línies són, per tant,
Exemple de bonificació
Quines són les línies de simetria del gràfic de:
Intenteu fer-ho a tu mateix, abans de llegir la solució a continuació.
Vas arribar:
Si és així, sou correcte.
Podem reescriure l’equació per fer més clares les traduccions:
És clar que a partir de
Això mou el centre
Les línies de simetria també es tradueixen:
En lloc de
en lloc de
Ara posa les línies en forma d’interconnexió de talús per obtenir les respostes que vaig donar.
A propòsit: els asíntotas de
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
La línia x = 3 és l'eix de simetria per a la gràfica d'una paràbola conté els punts (1,0) i (4, -3), quina és l'equació de la paràbola?
Equació de la paràbola: y = ax ^ 2 + bx + c. Trobeu a, b i c. x de l'eix de simetria: x = -b / (2a) = 3 -> b = -6a Escriptura que passa el gràfic en el punt (1, 0) i el punt (4, -3): (1) 0 = a + b + c -> c = - a - b = - a + 6a = 5a (2) -3 = 16a + 4b + c -> -3 = 16a - 24a + 5a = -3a -> a = 1 b = -6a = -6; i c = 5a = 5 y = x ^ 2 - 6x + 5 Comproveu amb x = 1: -> y = 1 - 6 + 5 = 0. D'acord
La línia n passa a través dels punts (6,5) i (0, 1). Quina és la intercepció y de la línia k, si la línia k és perpendicular a la línia n i passa pel punt (2,4)?
7 és la intercepció y de la línia k Primer, trobem el pendent de la línia n. (1-5) / (0-6) (-4) / - 6 2/3 = m El pendent de la línia n és 2/3. Això vol dir que el pendent de la línia k, que és perpendicular a la línia n, és el recíproc negatiu de 2/3 o -3/2. Així, doncs, l’equació que tenim fins ara és: y = (- 3/2) x + b Per calcular la intercepció y o b, només heu de connectar (2,4) a l’equació. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Així que la intercepció y és de 7