Resposta:
Traduir el problema a una declaració algebraica i resoldre una equació quadràtica per trobar que hi ha dos parells de nombres que satisfan el problema.
Explicació:
Quan estem resolent problemes algebraics, el primer que hem de fer és definir una variable per a les nostres incògnites. Les nostres incògnites en aquest problema són dos números parells consecutius el producte és
Se'ns diu que el producte d’aquests números és
Distribució del
Restant
Ara tenim una equació quadràtica. Podem provar de factoritzar-lo, trobant dos nombres que es multipliquen a
Les nostres solucions són:
Així, tenim dues combinacions:
#28# i#28+2# , o#30# . Podeu veure-ho#28*30=840# .#-30# i#-30+2# , o#-28# . De nou,#-30*-28=840# .
Resposta:
El reqd. nos. són
Explicació:
Suposem que el reqd. sencers són
En donem, doncs, tenim
CAS I
Cas II
El producte de dos enters parells consecutius és 24. Cerqueu els dos enters. Respon primer en forma de punts aparellats amb el més baix dels dos enters. Resposta?
Els dos enters parells consecutius: (4,6) o (-6, -4) Deixen, el color (vermell) (n i n-2 ser els dos enters parells consecutius, on el color (vermell) (n inZZ Producte de n i n-2 és 24, és a dir n (n-2) = 24 => n ^ 2-2n-24 = 0 ara, [(-6) + 4 = -2 i (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 o n + 4 = 0 ... a [n inZZ] => color (vermell) (n = 6 o n = -4 (i) color (vermell) (n = 6) => color (vermell) (n-2) = 6-2 = color (vermell) (4) Així, els dos enters parells consecutius: (4,6) (ii)) color (vermell) (n = -4) => color (vermell) (n-2) = -4-2 = color
El producte de dos enters imparells consecutius és 29 menys de 8 vegades la seva suma. Cerqueu els dos enters. Respon primer en forma de punts aparellats amb el més baix dels dos enters?
(13, 15) o (1, 3) Siguin x i x + 2 els nombres senars consecutius, llavors, segons la pregunta, tenim (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 o 1 Ara, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Els números són (13, 15). CAS II: x = 1:. x + 2 = 1+ 2 = 3:. Els números són (1, 3). Per tant, ja que aquí es formen dos casos; el parell de nombres pot ser (13, 15) o (1, 3).
"Lena té 2 enters consecutius.Es nota que la seva suma és igual a la diferència entre els seus quadrats. Lena escull dos altres enters consecutius i nota la mateixa cosa. Demostrar algebraicament que això és cert per a 2 enters consecutius?
Si us plau, consulteu l'explicació. Recordem que els enters consecutius difereixen per 1. Per tant, si m és un sencer, llavors, l’enter sencer ha de ser n + 1. La suma d'aquests dos enters és n + (n + 1) = 2n + 1. La diferència entre els seus quadrats és (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, com es desitja! Sent la joia de les matemàtiques.