Per a aquest problema hem d’utilitzar el teorema de Pitàgores.
on
La longitud de la hipotenusa en un triangle dret és de 20 centímetres. Si la longitud d’una cama és de 16 centímetres, quina és la longitud de l’altra cama?
"12 cm" De "Teorema de Pitàgores" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 on "h =" Longitud del costat de la hipotenusa "a =" Longitud d’una cama "b =" Longitud d’un altre cama ("20 cm") ^ 2 = ("16 cm") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 cm") ^ 2 - ("16 cm") ^ 2 "b" = sqrt (("20 cm") ^ 2 - ("16 cm") ^ 2) "b" = sqrt ("400 cm" ^ 2 - "256 cm" ^ 2) "b" = sqrt ("144 cm) "^ 2)" b = 12 cm "
La cama més llarga d'un triangle dret és de 3 polzades més de tres vegades la longitud de la cama més curta. L'àrea del triangle és de 84 polzades quadrades. Com es troba el perímetre d'un triangle dret?
P = 56 polzades quadrades. Vegeu la figura següent per a una millor comprensió. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Resolució de l'equació quadràtica: b_1 = 7 b_2 = -8 (impossible) Així, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 polzades quadrades
El perímetre d'un triangle és de 29 mm. La longitud del primer costat és el doble de la longitud del segon costat. La longitud del tercer costat és de 5 més que la longitud del segon costat. Com trobeu les longituds laterals del triangle?
S_1 = 12 s_2 = 6 s_3 = 11 El perímetre d'un triangle és la suma de les longituds de tots els seus costats. En aquest cas, es dóna que el perímetre és de 29 mm. Per tant, per a aquest cas: s_1 + s_2 + s_3 = 29 Així, resolent la longitud dels costats, traduïm les declaracions en forma d’equació. "La longitud de la 1a cara és el doble de la longitud del segon costat" Per resoldre-ho, assignem una variable aleatòria a s_1 o s_2. Per a aquest exemple, deixaria x la longitud del segon costat per evitar tenir fraccions a la meva equació. Així que sabem que: