Resposta:
L’equació és
Explicació:
El focus és
Per tant, la directriu és
Qualsevol punt
gràfic {(y + 1/12 (x + 2) ^ 2-9) (i-12) = 0 -32,47, 32,45, -16,23, 16,25}
El segon cas és
El focus és
Per tant, la directriu és
gràfic {(y-1/12 (x + 2) ^ 2-6) (y-3) = 0 -32.47, 32.45, -16.23, 16.25}
Suposem que una paràbola té vèrtex (4,7) i passa també pel punt (-3,8). Quina és l’equació de la paràbola en forma de vèrtex?
En realitat, hi ha dues paràboles (de forma de vèrtex) que compleixen les vostres especificacions: y = 1/49 (x- 4) ^ 2 + 7 i x = -7 (y-7) ^ 2 + 4 Hi ha dues formes de vèrtex: y = a (x- h) ^ 2 + k i x = a (yk) ^ 2 + h on (h, k) és el vèrtex i el valor de "a" es pot trobar utilitzant un altre punt. No se'ns dóna cap raó per excloure una de les formes, per tant substituïm el vèrtex donat a ambdues: y = a (x- 4) ^ 2 + 7 i x = a (y-7) ^ 2 + 4 Resoldre per a tots dos valors d’un usant el punt (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 i -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 i - 7
Quina declaració descriu millor l’equació (x + 5) 2 + 4 (x + 5) + 12 = 0? L’equació és de forma quadràtica, ja que es pot reescriure com una equació quadràtica amb u u (x + 5). L’equació és de forma quadràtica perquè quan s’expandeix,
Com s’explica a continuació, la substitució de l’U la qualificarà de quadràtica en u. Per a quadràtics en x, la seva expansió tindrà la major potència de x com 2, la qualificarà millor com quadràtica en x.
Una bola amb una massa de 3 kg està rodant a 3 m / s i xoca elàsticament amb una bola de repòs amb una massa d'1 kg. Quines són les velocitats post-col·lisió de les boles?
Equacions de conservació d’energia i d’impuls. u_1 '= 1,5 m / s u_2' = 4,5 m / s La wikipedia suggereix: u_1 '= (m_1-m_2) / (m_1 + m_2) * u_1 + (2m_2) / (m_1 + m_2) * u_2 = = (3- 1) / (3 + 1) * 3 + (2 * 1) / (3 + 1) * 0 = = 2/4 * 3 = 1,5 m / s u_2 '= (m_2-m_1) / (m_1 + m_2) * u_2 + (2m_1) / (m_1 + m_2) * u_1 = = (1-3) / (3 + 1) * 0 + (2 * 3) / (3 + 1) * 3 = = -2 / 4 * 0 + 6/4 * 3 = 4,5 m / s [Font de les equacions] Derivació Conservació del moment i de l'estat energètic: Momentum P_1 + P_2 = P_1 '+ P_2' Atès que el moment és igual a P = m * u m_1 * u_1 + m_2 * u_2 =