Resposta:
Explicació:
L’equació de la línia donada és
Com a producte de les pendents de dues línies és perpendicular entre si
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
La línia n passa a través dels punts (6,5) i (0, 1). Quina és la intercepció y de la línia k, si la línia k és perpendicular a la línia n i passa pel punt (2,4)?
7 és la intercepció y de la línia k Primer, trobem el pendent de la línia n. (1-5) / (0-6) (-4) / - 6 2/3 = m El pendent de la línia n és 2/3. Això vol dir que el pendent de la línia k, que és perpendicular a la línia n, és el recíproc negatiu de 2/3 o -3/2. Així, doncs, l’equació que tenim fins ara és: y = (- 3/2) x + b Per calcular la intercepció y o b, només heu de connectar (2,4) a l’equació. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Així que la intercepció y és de 7
Quina és l'equació d'una línia perpendicular a la línia 2x + y = 8 i amb la mateixa intercepció y que la línia 4y = x + 3?
2x-4y + 3 = 0. Línia de trucada L_1: 2x + y = 8, L_2: 4y = x + 3, i reqd. línia L. El pendent m de L_1, escrit com: y = -2x + 8, és m = -2. Per tant, el pendent m 'de L, L és perplex. a L_1, és m '= - 1 / m = 1/2. La intercepció Y de L_2, escrita com: y = 1 / 4x + 3/4, és c = 3/4. Usant m '& c per L, obtenim L: y = m'x + c, és a dir, y = 1 / 2x + 3/4. Escriure L a std. forma, L: 2x-4y + 3 = 0.