![El triangle A té una superfície de 6 i dos costats de longituds 5 i 3. El triangle B és similar al triangle A i té un costat amb una longitud de 14. Quines són les àrees màximes i mínimes possibles del triangle B? El triangle A té una superfície de 6 i dos costats de longituds 5 i 3. El triangle B és similar al triangle A i té un costat amb una longitud de 14. Quines són les àrees màximes i mínimes possibles del triangle B?](https://img.go-homework.com/img/geometry/triangle-a-has-an-area-of-12--and-two-sides-of-lengths-3-and-8--triangle-b-is-similar-to-triangle-a-and-has-a-side-of-length-15-.-what-are-the-m.jpg)
Resposta:
Explicació:
Si
llavors l’altura de
(Des de
i
Si
-
B s àrea màxima es produirà quan el costat de la longitud14 correspon aDeltaA del costat de la longitud3 En aquest cas
DeltaB L’altura serà4xx14 / 3 = 56/3 i la seva àrea serà
(56 / 3xx14) / 2 = 130 2/3 (unitats quadrades) -
B s àrea mínima es produirà llavors el costat de la longitud14 correspon aDeltaA del costat de la longitud5 En aquest cas
color (blanc) ("XXX") B L’altura serà4xx14 / 5 = 56/5 color (blanc) ("XXX") B La base serà3xx14 / 5 = 42/5 i
color (blanc) ("XXX") B l’àrea serà(56 / 5xx42 / 5) /2=2352/50=4704/100=47.04 (sq.units)
El triangle A té una superfície de 12 i dos costats de longituds 5 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 19. Quines són les àrees màximes i mínimes possibles del triangle B?
![El triangle A té una superfície de 12 i dos costats de longituds 5 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 19. Quines són les àrees màximes i mínimes possibles del triangle B? El triangle A té una superfície de 12 i dos costats de longituds 5 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 19. Quines són les àrees màximes i mínimes possibles del triangle B?](https://img.go-homework.com/geometry/triangle-a-has-an-area-of-12--and-two-sides-of-lengths-3-and-8--triangle-b-is-similar-to-triangle-a-and-has-a-side-of-length-15-.-what-are-the-m.jpg)
Àrea màxima = 187.947 unitats quadrades Àrea mínima = 88,4082 unitats quadrades Els triangles A i B són similars. Per mètode de proporció i proporció de solució, el triangle B té tres triangles possibles. Per al Triangle A: els costats són x = 7, y = 5, z = 4.800941906394, Angle Z = 43.29180759327 ^ @ L’angle Z entre els costats x i y s’ha obtingut utilitzant la fórmula de l’àrea del triangle = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Tres possibles triangles per al triangle B: els costats són el triangle 1. x_1 = 19, y_1 = 95/7
El triangle A té una superfície de 12 i dos costats de longituds 6 i 9. El triangle B és similar al triangle A i té un costat amb una longitud de 15. Quines són les àrees màximes i mínimes possibles del triangle B?
![El triangle A té una superfície de 12 i dos costats de longituds 6 i 9. El triangle B és similar al triangle A i té un costat amb una longitud de 15. Quines són les àrees màximes i mínimes possibles del triangle B? El triangle A té una superfície de 12 i dos costats de longituds 6 i 9. El triangle B és similar al triangle A i té un costat amb una longitud de 15. Quines són les àrees màximes i mínimes possibles del triangle B?](https://img.go-homework.com/geometry/triangle-a-has-an-area-of-12--and-two-sides-of-lengths-3-and-8--triangle-b-is-similar-to-triangle-a-and-has-a-side-of-length-15-.-what-are-the-m.jpg)
Les Delta s A i B són similars. Per obtenir l’àrea màxima de Delta B, el costat 15 de Delta B ha de correspondre al costat 6 de Delta A. Els costats tenen una proporció de 15: 6. Per tant, les àrees estaran en la proporció de 15 ^ 2: 6 ^ 2 = 225: 36 Àrea màxima del triangle B = (12 * 225) / 36 = 75 De manera similar per obtenir la zona mínima, el costat 9 del Delta A correspondrà al costat 15 de Delta B. Els costats es troben en la raó 15: 9 i les àrees 225: 81 Àrea mínima de Delta B = (12 * 225) / 81 = 33.3333
El triangle A té una superfície de 12 i dos costats de longituds 7 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 19. Quines són les àrees màximes i mínimes possibles del triangle B?
![El triangle A té una superfície de 12 i dos costats de longituds 7 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 19. Quines són les àrees màximes i mínimes possibles del triangle B? El triangle A té una superfície de 12 i dos costats de longituds 7 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 19. Quines són les àrees màximes i mínimes possibles del triangle B?](https://img.go-homework.com/geometry/triangle-a-has-an-area-of-12--and-two-sides-of-lengths-3-and-8--triangle-b-is-similar-to-triangle-a-and-has-a-side-of-length-15-.-what-are-the-m.jpg)
Àrea del triangle B = 88.4082 Atès que el triangle A és isòsceles, el triangle B també serà isòsceles.Els costats dels triangles B & A estan en la proporció de 19: 7 Les àrees estaran en la proporció de 19 ^ 2: 7 ^ 2 = 361: 49:. Àrea del triangle B = (12 * 361) / 49 = 88.4082