Resposta:
Domini:
Explicació:
El
Per a la col·lecció donada:
aquest és el conjunt indicat a la Resposta (anterior).
El conjunt de valors de la
La següent funció es dóna com un conjunt de parells ordenats {(1, 3), (3, -2), (0,2), (5,3) (- 5,4)} quin és el domini d'aquesta funció ?
{1, 3, 0, 5, -5} és el domini de la funció. Els parells ordenats tenen el valor de la coordenada x primer seguit del valor de la coordenada y corresponent. El domini dels parells ordenats és el conjunt de tots els valors de coordenades x. Per tant, amb referència a les parelles ordenades que apareixen en el problema, obtenim el nostre domini com a conjunt de tots els valors de coordenades x com es mostra a continuació: {1, 3, 0, 5, -5} és el domini de la funció.
El conjunt de parells ordenats (-1, 8), (0, 3), (1, -2) i (2, -7) representen una funció. Quin és el rang de la funció?
El rang per als dos components del parell ordenat és -oo a oo A partir dels parells ordenats (-1, 8), (0, 3), (1, -2) i (2, -7) s'observa que el primer component és augmentant constantment per 1 unitat i el segon component disminueix constantment en 5 unitats. Com que el primer component és 0, el segon component és 3, si deixem que el primer component sigui x, el segon component és -5x + 3, ja que x pot estar molt en el rang de -oo a oo, -5x també passa de -oo a oo.
Què és una regla per a la funció identificada per aquest conjunt de parells ordenats {(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)?
Y = x ^ 2 Observeu com (x, y): (1,1 ^ 2) (2,2 ^ 2) (3,3 ^ 2) (4,4 ^ 2) (5,5 ^ 2) el el valor y aquí és denotat per x ^ 2. Així, la regla és y = x ^ 2.