Resposta:
Explicació:
La integració per parts és una mala idea aquí, que sempre tindreu
Ho diem
Com integrar int sec ^ -1x pel mètode de la integració per parts?
La resposta és = x "arc" secx-ln (x + sqrt (x ^ 2-1)) + C necessitem (sec ^ -1x) '= ("arc" secx)' = 1 / (xsqrt (x ^ 2-1)) intsecxdx = ln (sqrt (x ^ 2-1) + x) La integració per parts és intu'v = uv-intuv 'Aquí tenim u' = 1, =>, u = xv = "arc "secx, =>, v '= 1 / (xsqrt (x ^ 2-1)) Per tant, int" arc "secxdx = x" arc "secx-int (dx) / (sqrt (x ^ 2-1)) Realitzeu la segona integral per substitució Let x = secu, =>, dx = secutanudu sqrt (x ^ 2-1) = sqrt (sec ^ 2u-1) = tanu intdx / sqrt (x ^ 2-1) = int (secutanudu ) / (tanu)
Com s'integren int x ^ 2 e ^ (- x) dx utilitzant la integració per parts?
Intx ^ 2e ^ (- x) dx = -e ^ (- x) (x ^ 2 + 2x + 2) + C La integració per parts diu que: intv (du) / (dx) = uv-intu (dv) / (dx) u = x ^ 2; (du) / (dx) = 2x (dv) / (dx) = e ^ (- x); v = -e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) -int-2xe ^ (- 2x) dx Ara ho fem: int-2xe ^ (- 2x) dx u = 2x; (du) / (dx) = 2 (dv ) / (dx) = - e ^ (- x); v = i ^ (- x) int-2xe ^ (- x) dx = 2xe ^ (- x) -int2e ^ (- x) dx = 2xe ^ ( -x) + 2e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) - (2xe ^ (- x) + 2e ^ (- x)) = - x ^ 2e ^ (- x) -2xe ^ (- x) -2e ^ (- x) + C = -e ^ (- x) (x ^ 2 + 2x + 2) + C
Com integrar int xsin (2x) per mètode de integració per parts?
= 1 / 4sin (2x) - x / 2cos (2x) + C Per a u (x), v (x) int uv'dx = uv '- int u'vdx u (x) = x implica u' (x) = 1 v '(x) = sin (2x) implica v (x) = -1 / 2cos (2x) intxsin (2x) dx = -x / 2cos (2x) + 1 / 2intcos (2x) dx = -x / 2cos (2x) + 1 / 4sin (2x) + C