Resposta:
Vegeu tot el procés de solució següent:
Explicació:
Perquè tenim una inclinació de
En aquest cas, la constant és
Per tant, l’equació és:
La forma d’interconnexió de pendent d’una equació lineal és:
On?
Així que podem escriure-ho com:
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
L’equació de la línia CD és y = 2x - 2. Com s’escriu una equació d’una línia paral·lela a la línia CD en forma d’intersecció de talus que conté el punt (4, 5)?
Y = -2x + 13 Vegeu explicacions Aquesta és una pregunta de resposta llarga.CD: "" y = -2x-2 El paral·lel significa la nova línia (l'anomenarem AB) tindrà la mateixa inclinació que el CD. m = -2:. y = -2x + b Ara connecteu el punt donat. (x, y) 5 = -2 (4) + b Resoldre per b. 5 = -8 + b 13 = b Així doncs, l'equació de AB és y = -2x + 13. Ara comproveu y = -2 (4) +13 y = 5 Per tant (4,5) és a la línia y = -2x + 13
Quina és l’equació de forma d’intercepció de pendent d’una línia amb un pendent de 6 i una intercepció en y de 4?
Y = 6x + 4 La forma d'intercepció de pendent d'una línia és y = mx + b. m = "pendent" b = "intercepta" Sabem que: m = 6 b = 4 connecteu-los a: y = 6x + 4 Això sembla així: gràfic {6x + 4 [-10, 12,5, -1.24, 10.01] } La intercepció y és 4 i la inclinació és 6 (per cada 1 unitat en la direcció x, augmenta 6 unitats en la direcció y).