Resposta:
Explicació:
# "l'equació d'un quadràtic en" color (blau) "vèrtex" és.
#color (vermell) (barra (ul (| color (blanc) (2/2) color (negre) (y = un (x-h) ^ 2 + k) color (blanc) (2/2) |))) # # on (h, k) són les coordenades del vèrtex i a és una constant.
# "aquí" (h, k) = (2,3) #
# rArry = a (x-2) ^ 2 + 3
# "per trobar un, substitueix" (1,1) "a l’equació" #
# 1 = a + 3rArra = -2 #
# rArry = -2 (x-2) ^ 2 + 3larrcolor (vermell) "en forma de vèrtex" # gràfic {-2 (x-2) ^ 2 + 3 -10, 10, -5, 5}
El gràfic d’una funció quadràtica té intercepcions x-2 i 7/2, com escriviu una equació quadràtica que té aquestes arrels?
Trobeu f (x) = ax ^ 2 + bx + c = 0 coneixent les dues arrels reals: x1 = -2 i x2 = 7/2. Donades dues arrels reals c1 / a1 i c2 / a2 d’una equació quadràtica ax ^ 2 + bx + c = 0, hi ha 3 relacions: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (suma diagonal). En aquest exemple, les 2 arrels reals són: c1 / a1 = -2/1 i c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. L'equació quadràtica és: Resposta: 2x ^ 2 - 3x - 14 = 0 (1) Comproveu: trobeu les 2 arrels reals de (1) pel nou mètode AC. Equació convertida: x ^ 2 - 3x - 28 = 0 (2). Resoldre l'equació
A continuació es mostra la gràfica de la funció f (x) = (x + 2) (x + 6). Quina afirmació sobre la funció és certa? La funció és positiva per a tots els valors reals de x on x> –4. La funció és negativa per a tots els valors reals de x on –6 <x <–2.
La funció és negativa per a tots els valors reals de x on –6 <x <–2.
Quina declaració descriu millor l’equació (x + 5) 2 + 4 (x + 5) + 12 = 0? L’equació és de forma quadràtica, ja que es pot reescriure com una equació quadràtica amb u u (x + 5). L’equació és de forma quadràtica perquè quan s’expandeix,
Com s’explica a continuació, la substitució de l’U la qualificarà de quadràtica en u. Per a quadràtics en x, la seva expansió tindrà la major potència de x com 2, la qualificarà millor com quadràtica en x.