Resposta:
Explicació:
# "una línia horitzontal paral·lela a l'eix X té un" especial "
# "equació" #
#color (vermell) (barra (ul (| color (blanc) (2/2) color (negre) (y = c) color (blanc) (2/2) |))) #)
# "on c és el valor de la coordenada y que la línia" #
# "passa a través de" #
# "aquí la línia passa per" (2, color (vermell) (8))
# rArry = 8larrcolor (red) "és l'equació de la línia horitzontal" # gràfic {(y-0.001x-8) = 0 -28.1, 28.08, -14.04, 14.06}
La línia L té l'equació 2x-3y = 5 i la Línia M passa pel punt (2, 10) i és perpendicular a la línia L. Com es determina l'equació de la línia M?
En forma de punt de pendent, l’equació de la línia M és y-10 = -3 / 2 (x-2). En forma d’interconnexió de talus, és y = -3 / 2x + 13. Per tal de trobar el pendent de la línia M, primer hem de deduir el pendent de la línia L. L'equació de la línia L és 2x-3y = 5. Això és en forma estàndard, que no ens explica directament la inclinació de L. Podem reordenar aquesta equació, però, en forma d’interconnexió de talus resolent y: 2x-3y = 5 color (blanc) (2x) -3y = 5-2x "" (restar 2x dels dos costats) color (blanc) (2x-3) y = (5-2x) /
La línia L té l'equació 2x- 3y = 5. La línia M passa pel punt (3, -10) i és paral·lela a la línia L. Com es determina l'equació de la línia M?
Vegeu un procés de solució a continuació: la Línia L es troba en forma estàndard lineal. La forma estàndard d’una equació lineal és: color (vermell) (A) x + color (blau) (B) y = color (verd) (C) On, si és possible, color (vermell) (A), color (blau) (B) i el color (verd) (C) són enters, i A no és negatiu, i, A, B i C no tenen factors comuns que no siguin 1 color (vermell) (2) x - color (blau) (3) y = color (verd) (5) La inclinació d'una equació en forma estàndard és: m = -color (vermell) (A) / color (blau) (B) Substituint els valors de l'equa
Quina és l'equació de la línia que passa pel punt d'intersecció de les línies y = x i x + y = 6 i que és perpendicular a la línia amb l'equació 3x + 6y = 12?
La línia és y = 2x-3. Primer, trobeu el punt d’intersecció de y = x i x + y = 6 usant un sistema d’equacions: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 i ja que y = x: => y = 3 El punt d'intersecció de les línies és (3,3). Ara cal trobar una línia que travessi el punt (3,3) i sigui perpendicular a la línia 3x + 6y = 12. Per trobar la inclinació de la línia 3x + 6y = 12, converteix-la en forma d'intercepció de pendent: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Així el pendent és -1/2. Les pendents de les línies perpen