Resposta:
Explicació:
La carrera de
El pendent és
# "pendent" = "augment" / "executa" = 8/5 #
Tu tens
#y = 8 / 5x #
Llavors, si ho poses
#6= 32/5#
Per fer que l’equació sigui veritable, s’ha de restar
# y = 8 / 5x-2/5 #
Els Lakers van aconseguir un total de 80 punts en un partit de bàsquet contra els Bulls. Els Lakers van fer un total de 37 cistelles de dos punts i tres punts. Quants tirs de dos punts van fer els Lakers? Escriviu un sistema d'equacions lineals que es poden utilitzar per resoldre-ho
Els Lakers van fer 31 punters i 6 triples. Sigui x el nombre de captures de dos punts realitzades i deixeu el nombre de tirs de tres punts realitzats. Els Lakers van obtenir un total de 80 punts: 2x + 3y = 80 Els Lakers van fer un total de 37 cistelles: x + y = 37 Aquestes dues equacions es poden resoldre: (1) 2x + 3y = 80 (2) x + y = 37 L'equació (2) dóna: (3) x = 37-y Substituint (3) a (1) dóna: 2 (37-y) + 3y = 80 74-2y + 3y = 80 y = 6 Ara només fem servir el equació més simple (2) per obtenir x: x + y = 37 x + 6 = 37 x = 31 Per tant, els Lakers van fer 31 punters i 6 triples.
Els objectes A, B, C amb masses m, 2 m, i m es mantenen en una superfície de fricció menys horitzontal. L’objecte A es mou cap a B amb una velocitat de 9 m / s i fa una col·lisió elàstica amb ell. B fa una col·lisió totalment inelàstica amb C. Llavors la velocitat de C és?
Amb una col·lisió totalment elàstica, es pot suposar que tota l'energia cinètica es transfereix del cos en moviment al cos en repòs. 1 / 2m_ "inicial" v ^ 2 = 1 / 2m_ "altre" v_ "final" ^ 2 1 / 2m (9) ^ 2 = 1/2 (2m) v_ "final" ^ 2 81/2 = v_ "final "^ 2 sqrt (81) / 2 = v_" final "v_" final "= 9 / sqrt (2) Ara, en una col·lisió completament inelàstica, es perd tota l'energia cinètica, però es trasllada el moment. Per tant, m_ "inicial" v = m_ "final" v_ "final" 2m9 / sq
Quines són les característiques de la gràfica de la funció f (x) = (x + 1) ^ 2 + 2? Marqueu-ho tot. El domini és tots els nombres reals. L'interval és tots els nombres reals superiors o iguals a 1. La intercepció y és 3. La gràfica de la funció és 1 unitat i
La primera i la tercera són certes, la segona és falsa, la quarta no està acabada. - El domini és, efectivament, tots els nombres reals. Podeu reescriure aquesta funció com x ^ 2 + 2x + 3, que és un polinomi, i com a tal té el domini mathbb {R} El rang no és un nombre real major o igual a 1, ja que el mínim és 2. fet. (x + 1) ^ 2 és una traducció horitzontal (una unitat esquerra) de la paràbola "strandard" x ^ 2, que té un rang [0, infty). Quan afegiu 2, canvieu el gràfic verticalment per dues unitats, de manera que l’interval de vosaltres