Resposta:
Pendent =
Explicació:
Per resoldre-ho, haureu de conèixer la idea de l’augment de l’execució. En el cas de dos punts, utilitzaràs
Això significa bàsicament que es perdrà el punt d’un punt amb un altre. El mateix passa amb x.
En aquest cas, diguem-ho
Per tant, connectant aquests valors, obtindrem:
I viola! El nostre pendent és
Quina és l’equació de la línia que passa per (0, -1) i és perpendicular a la línia que passa pels següents punts: (8, -3), (1,0)?
7x-3y + 1 = 0 La inclinació de la línia que uneix dos punts (x_1, y_1) i (x_2, y_2) es dóna per (y_2-y_1) / (x_2-x_1) o (y_1-y_2) / (x_1-x_2) ) Com els punts són (8, -3) i (1, 0), la inclinació de la línia que els uneix serà donada per (0 - (- 3)) / (1-8) o (3) / (- 7) és a dir, -3/7. El producte de pendent de dues línies perpendiculars sempre és -1. Per tant, la inclinació de la línia perpendicular a ella serà de 7/3 i, per tant, es pot escriure l’equació en forma de pendent com y = 7 / 3x + c A mesura que passa pel punt (0, -1), posem aquests valors a
Quina és l’equació de la línia que passa per (0, -1) i és perpendicular a la línia que passa pels següents punts: (13,20), (16,1)?
Y = 3/19 * x-1 El pendent de la línia passa per (13,20) i (16,1) és m_1 = (1-20) / (16-13) = - 19/3 Sabem la condició de la perpedicularitat entre dues línies és el producte de les seves pendents igual a -1: .m_1 * m_2 = -1 o (-19/3) * m_2 = -1 o m_2 = 3/19 de manera que la línia que passa (0, -1) ) és y + 1 = 3/19 * (x-0) o y = 3/19 * x-1 gràfic {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Quina de les següents és la pregunta de la línia que passa pels dos punts següents: (5, -6) i (5, -3)
A. x = 5 En els dos punts de coordenades que heu proporcionat: (5, -6) i (5, -3), quina és la coordenada x en tots dos? 5 correcte? Per tant, els 2 punts de coordenades estaran situats a la línia vertical: x = 5