Com es troba l'amplitud, el període, el canvi de fase donat y = 2csc (2x-1)?

Com es troba l'amplitud, el període, el canvi de fase donat y = 2csc (2x-1)?
Anonim

Resposta:

El # 2x # fa el període #Pi#, el #-1# comparat amb #2# in # 2x # fa el canvi de fase #1/2# radian, i la naturalesa divergent del cosecant fa que l’amplitud sigui infinita.

Explicació:

La meva pestanya es va estavellar i he perdut les modificacions. Un intent més.

Gràfic de # 2csc (2x - 1) #

gràfic {2 csc (2x - 1) -10, 10, -5, 5}

El trigó funciona com # csc x # tots tenen període # 2 pi. # Mitjançant el doble del coeficient # x #, que redueix la meitat del període, de manera que la funció #csc (2x) # ha de tenir un període de #Pi#, com ha de fer # 2 csc (2x-1) #.

El canvi de fase de #csc (ax-b) # es dóna per # b / a. # Aquí tenim un canvi de fase de #frac 1 2 # radian, aproximadament # 28.6 ^. El signe menys significa # 2csc (2x-1) # condueix # 2csc (2x) # així que anomenem això un canvi de fase positiu de #frac 1 2 # radian.

#csc (x) = 1 / sin (x) # així que divergeix dues vegades per període. L'amplitud és infinita.