Resposta:
En coordenades polars, r = a i
Explicació:
L’equació polar d’un cercle complet, referida al seu centre com a pol, és r = a. L’interval de
Per a mig cercle, el rang de
Així doncs, la resposta és
r = a i
Resposta:
En coordenades rectangulars, es pot escriure l’equació de la meitat superior d’un cercle:
#y = sqrt (r ^ 2 - (x-h) ^ 2) + k
Explicació:
L’equació d’un cercle complet amb el centre
# (x-h) ^ 2 + (i-k) ^ 2 = r ^ 2 #
Per tant, la meitat superior d’un cercle es pot expressar com:
#y = sqrt (r ^ 2 - (x-h) ^ 2) + k
on
Tomas va escriure l'equació y = 3x + 3/4. Quan Sandra va escriure la seva equació, van descobrir que la seva equació tenia totes les mateixes solucions que l'equació de Tomás. Quina equació podria ser de Sandra?
4y = 12x +3 12x-4y +3 = 0 Una equació es pot donar en moltes formes i encara significa el mateix. y = 3x + 3/4 "" (conegut com a forma de pendent / intercepció.) Multiplicat per 4 per eliminar la fracció que dóna: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma estàndard) 12x- 4y +3 = 0 "" (forma general) Totes es troben en la forma més senzilla, però també podríem tenir variacions infinites. 4y = 12x + 3 es podria escriure com: 8y = 24x +6 "" 12y = 36x +9, 20y = 60x +15 etc
Se li dóna un cercle B el centre del qual és (4, 3) i un punt a (10, 3) i un altre cercle C el centre és (-3, -5) i un punt en aquest cercle és (1, -5) . Quina és la relació entre el cercle B i el cercle C?
3: 2 "o" 3/2 "necessitem per calcular els radis dels cercles i comparar" "el radi és la distància del centre al punt" "al cercle" "centre de B" = (4,3 ) "i el punt és" = (10,3) "ja que les coordenades y són les 3, llavors el radi és la diferència en les coordenades x" rArr "radi de B" = 10-4 = 6 "centre de C "= (- 3, -5)" i el punt és "= (1, -5)" les coordenades y són - 5 "rArr" radi de C "= 1 - (- 3) = 4" ràtio " = (color (vermell) "radi_B"
El cercle A té un radi de 2 i un centre de (6, 5). El cercle B té un radi de 3 i un centre de (2, 4). Si el cercle B es tradueix per <1, 1>, ¿se superposa el cercle A? Si no, quina és la distància mínima entre els punts dels dos cercles?
"els cercles se superposen"> "el que hem de fer aquí és comparar la distància (d) entre els centres i la suma dels radis" • "si la suma dels radis"> d ", llavors els cercles se superposen" • "si la suma de" " radis "<d" llavors no hi ha cap solapament "" abans de calcular d que necessitem trobar el nou centre de "" B després de la traducció donada sota la traducció "<1,1> (2,4) a (2 + 1,", 4 + 1) a (3,5) larrcolor (vermell) "nou centre de B" per calcular d utilitzar el "