Resposta:
Explicació:
Un cercle general centrat en
El centre del cercle seria el punt mig entre els dos extrems de diàmetre, és a dir
El radi del cercle seria la meitat del diàmetre, és a dir. la meitat de la distància entre els 2 punts donats, és a dir
Així, doncs, l’equació del cercle és
Tenim un cercle amb un quadrat inscrit amb un cercle inscrit amb un triangle equilàter inscrit. El diàmetre del cercle exterior és de 8 peus. El material del triangle costava 104,95 dòlars quadrats. Quin és el cost del centre triangular?
El cost d’un centre triangular és de $ 1090.67 AC = 8 com a diàmetre donat d’un cercle. Per tant, del teorema de Pitàgores per al triangle isòsceles dret Delta ABC, AB = 8 / sqrt (2) Llavors, des de GE = 1/2 AB, GE = 4 / sqrt (2) lybviament, el triangle Delta GHI és equilàter. El punt E és un centre d’un cercle que circumscriu Delta GHI i, com a tal, és un centre d’intersecció de mitges, altituds i bisectrius d’aquest triangle. Se sap que un punt d’intersecció de les medianes divideix aquestes mitjanes en la proporció de 2: 1 (per veure proves veure Unizor i seguir els
Quina és la circumferència d'un cercle de 15 polzades si el diàmetre d'un cercle és directament proporcional al seu radi i un cercle amb un diàmetre de 2 polzades té una circumferència d'aproximadament 6,28 polzades?
Crec que la primera part de la pregunta suposava que la circumferència d'un cercle és directament proporcional al seu diàmetre. Aquesta relació és com aconseguim pi. Coneixem el diàmetre i la circumferència del cercle més petit, respectivament "2 in" i "6,28 in". Per tal de determinar la proporció entre la circumferència i el diàmetre, dividim la circumferència pel diàmetre "6.28" / "2 in" = "3.14", que sembla molt a pi. Ara que coneixem la proporció, podem multiplicar el diàmetre del cercle m
Els punts (–9, 2) i (–5, 6) són punts finals del diàmetre d'un cercle Quina és la longitud del diàmetre? Quin és el punt central del cercle? Donat el punt C que heu trobat a la part (b), indiqueu el punt simètric de C al voltant de l’eix x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 centre, C = (-7, 4) punt simètric sobre l'eix X: (-7, -4) Donat: punts finals del diàmetre d'un cercle: (- 9, 2), (-5, 6) Utilitzeu la fórmula de distància per trobar la longitud del diàmetre: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Utilitzeu la fórmula del punt mitjà per trobar el centre: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Utilitzeu la regla de coordenades per a la reflexi