Resposta:
Vegeu l’explicació.
Explicació:
Que els costats siguin:
Els perímetres de les figures són iguals, el que condueix a:
# 4a = 3b #
Si dividim els dos costats per
# b / a = 4/3 #
Resposta:
Explicació:
Resposta:
Explicació:
Tots dos tenen el mateix perímetre.
Estableix la longitud total del perímetre com
La longitud del costat del triangle és
La longitud del costat quadrat és
Per tant, la relació és
Conjunt
Multipliqueu per 1 i no canvieu el valor. No obstant això, 1 ve de moltes formes
La longitud de cada costat d'un triangle equilàter augmenta de 5 polzades, de manera que el perímetre és ara de 60 polzades. Com escriviu i solucioneu una equació per trobar la longitud original de cada costat del triangle equilàter?
He trobat: 15 "a" Anomenem les longituds originals x: Augmentant de 5 "en" ens donaran: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = Reordenar 60: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "en"
La longitud de cada costat del quadrat A s'incrementa en un 100 per cent per fer quadrat B. Llavors cada costat del quadrat s'incrementa en un 50 per cent per fer el quadrat C. Per quin percentatge és l'àrea del quadrat C major que la suma de les àrees de quadrat A i B?
L'àrea de C és un 80% superior a la superfície de l'àrea A + de B Definir com a unitat de mesura la longitud d’un costat d’A. Àrea d = 1 ^ 2 = 1 sq.unit La longitud dels costats de B és 100% més que la longitud dels costats d’A rarr. Longitud dels costats de B = 2 unitats. Àrea de B = 2 ^ 2 = 4 unitats quadrades. La longitud dels costats de C és un 50% més que la longitud dels costats de B rarr. Longitud de costats de C = 3 unitats. Àrea de C = 3 ^ 2 = 9 metres quadrats. L'àrea de C és 9- (1 + 4) = 4 unitats superiors a les àrees combinades d
El perímetre d'un triangle és de 29 mm. La longitud del primer costat és el doble de la longitud del segon costat. La longitud del tercer costat és de 5 més que la longitud del segon costat. Com trobeu les longituds laterals del triangle?
S_1 = 12 s_2 = 6 s_3 = 11 El perímetre d'un triangle és la suma de les longituds de tots els seus costats. En aquest cas, es dóna que el perímetre és de 29 mm. Per tant, per a aquest cas: s_1 + s_2 + s_3 = 29 Així, resolent la longitud dels costats, traduïm les declaracions en forma d’equació. "La longitud de la 1a cara és el doble de la longitud del segon costat" Per resoldre-ho, assignem una variable aleatòria a s_1 o s_2. Per a aquest exemple, deixaria x la longitud del segon costat per evitar tenir fraccions a la meva equació. Així que sabem que: