Resposta:
1256.64
Explicació:
Diàmetre = 2 radi
40 = 2 r
r = 20 metres
Àrea d’un cercle =
=1256.64
Resposta:
Explicació:
L’àrea d’un cercle és igual a
Si el vostre diàmetre és de 40 metres, el vostre radi ha de ser de 20 m, ja que el radi d'un cercle sempre és la meitat del diàmetre. Amb aquesta equació, cal multiplicar
El diàmetre d'un cercle és de 40 m, com es troba la zona del cercle en termes de pi?
L'àrea d'un cercle és A = pi * r ^ 2, doncs el diàmetre és d = 2r => r = d / 2 i llavors A = pi * (d / 2) ^ 2 => A = (400 * pi) m ^ 2
Quina és la circumferència d'un cercle de 15 polzades si el diàmetre d'un cercle és directament proporcional al seu radi i un cercle amb un diàmetre de 2 polzades té una circumferència d'aproximadament 6,28 polzades?
Crec que la primera part de la pregunta suposava que la circumferència d'un cercle és directament proporcional al seu diàmetre. Aquesta relació és com aconseguim pi. Coneixem el diàmetre i la circumferència del cercle més petit, respectivament "2 in" i "6,28 in". Per tal de determinar la proporció entre la circumferència i el diàmetre, dividim la circumferència pel diàmetre "6.28" / "2 in" = "3.14", que sembla molt a pi. Ara que coneixem la proporció, podem multiplicar el diàmetre del cercle m
Els punts (–9, 2) i (–5, 6) són punts finals del diàmetre d'un cercle Quina és la longitud del diàmetre? Quin és el punt central del cercle? Donat el punt C que heu trobat a la part (b), indiqueu el punt simètric de C al voltant de l’eix x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 centre, C = (-7, 4) punt simètric sobre l'eix X: (-7, -4) Donat: punts finals del diàmetre d'un cercle: (- 9, 2), (-5, 6) Utilitzeu la fórmula de distància per trobar la longitud del diàmetre: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Utilitzeu la fórmula del punt mitjà per trobar el centre: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Utilitzeu la regla de coordenades per a la reflexi