Resposta:
Primer trobeu m.
Explicació:
Els tres primers coeficients sempre seran
La suma d’aquests simplifica a
L’única solució positiva és
Ara, en l'expansió amb m = 9, el terme que falta x ha de ser el terme que conté
Aquest terme té un coeficient de
La solució és 84.
El primer i el segon termes d’una seqüència geomètrica són, respectivament, el primer i el tercer termes d’una seqüència lineal. El quart terme de la seqüència lineal és 10 i la suma dels seus primers cinc termes és 60.
{16, 14, 12, 10, 8} Una seqüència geomètrica típica es pot representar com c_0a, c_0a ^ 2, cdots, c_0a ^ k i una seqüència aritmètica típica com c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Cridar c_0 a com el primer element de la seqüència geomètrica que tenim {(c_0 a ^ 2 = c_0a + 2Delta -> "El primer i el segon de GS són el primer i el tercer d’un LS"), (c_0a + 3Delta = 10- > "El quart terme de la seqüència lineal és 10"), (5c_0a + 10Delta = 60 -> "La suma dels primers cinc termes és de 60"):}
El quart terme d'un AP és igual als tres vegades que el setè terme supera el doble del tercer terme per 1. Trobeu el primer terme i la diferència comuna?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Substituint els valors de l’equació (1), a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Substituint els valors de l’equació (2), a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) En resoldre equacions (3) i (4) simultàniament obtenim, d = 2/13 a = -15/13
La suma dels primers quatre termes d'un metge general és de 30 i la dels quatre últims termes és de 960. Si el primer i l'últim terme del metge de capçalera és de 2 i 512, respectivament, trobeu la proporció comuna.
2root (3) 2. Suposem que la relació comuna (cr) del metge de capçalera en qüestió és r i n ^ (th) terme és l’últim terme. Atès que, el primer terme del metge de capçalera és de 2.: "El metge de capçalera és" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Donat, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (estel ^ 1), i, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (estrella ^ 2). També sabem que l'últim terme és 512.:. r ^ (n-1) = 512 .................... (estrella ^ 3). Ara, (estel ^ 2) rArr r ^ (n-4)