Resposta:
Explicació:
# "l'equació d'una línia en" color (blau) "forma de intercepció de pendent" # és.
# • color (blanc) (x) y = mx + b #
# "on m és la inclinació i b la intercepció-y" #
# "reordena" 2y = 4x-2 "en aquest formulari"
# "dividiu tots els termes per 2" #
# rArry = 2x-1larrcolor (blau) "en forma de intercepció de pendent" #
# "amb pendent" = m = 2
# • "Les línies paral·leles tenen pendents iguals".
#rArrm _ ("paral·lel") = 2
# rArry = 2x + blarrcolor (blau) "és l'equació parcial" #
# "per trobar el substitut b" (-3,5) "a l'equació parcial" #
# 5 = -6 + brArrb = 5 + 6 = 11 #
# rArry = 2x + 11larrcolor (red) "equació de la línia paral·lela" #
L’equació de la línia és -3y + 4x = 9. Com escriviu l’equació d’una línia paral·lela a la línia i passa pel punt (-12,6)?
Y-6 = 4/3 (x + 12) Utilitzarem la forma de gradient de punt ja que ja tenim un punt al qual anirà la línia (-12,6) i la paraula paral·lela significa que el gradient de les dues línies ha de ser el mateix. per tal de trobar el gradient de la línia paral·lela, hem de trobar el gradient de la línia que hi és paral·lela. Aquesta línia és -3y + 4x = 9, que es pot simplificar en y = 4 / 3x-3. Això ens dóna el gradient de 4/3. Ara per escriure l’equació el col·loquem en aquesta fórmula y-y_1 = m (x-x_1), van ser (x_1, y_1) el punt que travessen i m
La línia L té l'equació 2x- 3y = 5. La línia M passa pel punt (3, -10) i és paral·lela a la línia L. Com es determina l'equació de la línia M?
Vegeu un procés de solució a continuació: la Línia L es troba en forma estàndard lineal. La forma estàndard d’una equació lineal és: color (vermell) (A) x + color (blau) (B) y = color (verd) (C) On, si és possible, color (vermell) (A), color (blau) (B) i el color (verd) (C) són enters, i A no és negatiu, i, A, B i C no tenen factors comuns que no siguin 1 color (vermell) (2) x - color (blau) (3) y = color (verd) (5) La inclinació d'una equació en forma estàndard és: m = -color (vermell) (A) / color (blau) (B) Substituint els valors de l'equa
Com trobeu tots els punts de la corba x ^ 2 + xy + y ^ 2 = 7 on la línia tangent és paral·lela a l'eix x, i el punt on la línia tangent és paral·lela a l'eix Y?
La línia tangent és paral·lela a l'eix x quan el pendent (d'aquí dy / dx) és zero i és paral·lel a l'eix y quan el pendent (de nou, dy / dx) va a oo o -oo Començarem per trobar dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Ara, dy / dx = 0 quan el nuimerator és 0, sempre que això no faci també el denominador 0. 2x + y = 0 quan y = -2x Tenim ara dues equacions: x ^ 2 + xy + y ^ 2 = 7 y = -2x Resoldre (per substitució) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x