Aquí '/ la manera com faig això és:
- Deixaré alguns
-
Així que tinc,
# "" sintheta = 9x "" # i# "" cosalpha = 9x # -
Diferencialitzo els dos de manera implícita:
# => (costheta) (d (theta)) / (dx) = 9 "" => (d (theta)) / (dx) = 9 / (costheta) = 9 / (sqrt (1-sin ^ 2theta)) = 9 / (sqrt (1- (9x) ^ 2) #
- A continuació, diferencio
-
En general,
# "" f (x) = teta + alfa # -
Tan,
#f ^ ('') (x) = (d (theta)) / (dx) + (d (alfa)) / (dx) = 9 / sqrt (1- (9x) ^ 2) -9 / sqrt (1- (9x) ^ 2) = 0
Què és Cos (arcsin (-5/13) + arccos (12/13))?
= 1 En primer lloc, voleu deixar alpha = arcsin (-5/13) i beta = arccos (12/13). Així que ara busquem color (vermell) cos (alfa + beta)! => sin (alfa) = - 5/13 "" i "" cos (beta) = 12/13 Record: cos ^ 2 (alfa) = 1-sin ^ 2 (alfa) => cos (alfa) = sqrt ( 1-sin ^ 2 (alfa) => cos (alfa) = sqrt (1 - (- 5/13) ^ 2) = sqrt ((169-25) / 169) = sqrt (144/169) = 12 / 13 De la mateixa manera, cos (beta) = 12/13 => sin (beta) = sqrt (1-cos ^ 2 (beta)) = sqrt (1- (12/13) ^ 2) = sqrt ((169-144) / 169) = sqrt (25/169) = 5/13 => cos (alfa + beta) = cos (alfa) cos (beta) -sin (alfa) sin (beta) Llavors s
Com puc simplificar el pecat (arccos (sqrt (2) / 2) -arcsin (2x))?
Aconseguiu el pecat (arccos (sqrt {2} / 2) - arcsin (2x)) = {2x pm sqrt {1 - 4x ^ 2}} / {sqrt {2}} Tenim el seno d’una diferència, així que el pas un serà la fórmula de l'angle de diferència, sin (ab) = sin a cos b - cos a sin b sin (arccos (sqrt {2} / 2) - arcsin (2x)) = sin arccos (sqrt {2} / 2) cos arcsin (2x) + cos arccos (sqrt {2} / 2) sin arcsin (2x) Bé, el sinus d’arcsina i el cosinus d’arccosina són fàcils, però què passa amb els altres? Bé, reconeixem arccos (sqrt {2} / 2) com a pm 45 ^ circ, així que sin arccos (sqrt {2} / 2) = pm sqrt {2} / 2 deixar
Com es demostra arcsin x + arccos x = pi / 2?
Com es mostra Let arcsinx = theta llavors x = sintheta = cos (pi / 2-theta) => arccosx = pi / 2-theta = pi / 2-arcsinx => arccosx = pi / 2-arcsinx => arcsinx + arccosx = pi / 2