Resposta:
El mínim absolut és
El màxim absolut és
Explicació:
L’extrema absolut d’una funció és el més gran i el més petit dels valors de la funció en un domini donat. Aquest domini ens pot ser donat (com en aquest problema) o pot ser el domini de la pròpia funció. Fins i tot quan se'ns dóna el domini, hem de tenir en compte el domini de la pròpia funció, en cas que exclogui qualsevol valor del domini que se'ns proporcioni.
Tanmateix, encara hem de considerar el fet que el denominador no pot ser igual a zero. El denominador serà igual a zero quan
Així doncs, anem a buscar l’extrema absolut
Si ho considerem
No hi ha valors de
Utilitzant el "candidat test", trobem els valors de
Una revisió ràpida de les nostres calculadores mostra que:
Quins són els extrems absoluts de f (x) = x ^ 3 - 3x + 1 a [0,3]?
A [0,3], el màxim és 19 (a x = 3) i el mínim és -1 (a x = 1). Per trobar l’extrema absolut d’una funció (contínua) en un interval tancat, sabem que l’extrema s’ha de produir tant en numèries crtices com en l’interval o en els punts finals de l’interval. f (x) = x ^ 3-3x + 1 té la derivada f '(x) = 3x ^ 2-3. 3x ^ 2-3 no està mai indefinit i 3x ^ 2-3 = 0 a x = + - 1. Com que -1 no està en l'interval [0,3], el descartem. L’únic nombre crític a considerar és 1. f (0) = 1 f (1) = -1 i f (3) = 19. Així, el màxim és 19 (a x = 3) i el míni
Quins són els extrems absoluts de f (x) = (x ^ 3-7x ^ 2 + 12x-6) / (x-1) a [1,4]?
No hi ha màximes globals. Els mínims globals són -3 i es produeixen a x = 3. f (x) = (x ^ 3 - 7x ^ 2 + 12x - 6) / (x - 1) f (x) = ((x - 1) (x ^ 2 - 6x + 6)) / (x - 1) f (x) = x ^ 2 - 6x + 6, on x 1 f '(x) = 2x - 6 L’extrema absolut es produeix en un punt final o al nombre crític. Punts finals: 1 i 4: x = 1 f (1): "indefinit" lim_ (x 1) f (x) = 1 x = 4 f (4) = -2 punt (s) crític: f '(x) = 2x - 6 f '(x) = 0 2x - 6 = 0, x = 3 A x = 3 f (3) = -3 No hi ha màxims globals. No hi ha mínims globals és -3 i es produeix a x = 3.
Quins són els extrems absoluts de f (x) = 1 / (1 + x ^ 2) a [oo, oo]?
X = 0 és el màxim de la funció. f (x) = 1 / (1 + x²) Cerquem f '(x) = 0 f' (x) = - 2x / ((1 + x²) ²) Així podem veure que hi ha una solució única, f ' (0) = 0 I també que aquesta solució és el màxim de la funció, ja que lim_ (x a ± oo) f (x) = 0 i f (0) = 1 és aquí la nostra resposta.